
Mutter aller Sicherheitslücken 
Arbitrary Code Execution in the Universal Turing Machine

Prof Pontus Johnson 
KTH Royal Institute of Technology



2

"Engineering is the closest thing to magic that exists in the world." 
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Arbitrary code execution



Example arbitrary code execution 
SQL injection
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Program 

txtUserId = getRequestString("UserId");  
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

Malicious input 

105; DROP TABLE Users

Result 

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Users;

105; DROP TABLE Suppliers
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Entscheidungsproblem
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David Hilbert

Is there an algorithm that will take a formal language, and a logical statement in that language, and that will output "True" or "False", 
depending on the truth value of the statement?

1928
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230 A. M. TUKING [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO

THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real

numbers whose expressions as a decimal are calculable by finite means.

Although the subject of this paper is ostensibly the computable numbers.

it is almost equally easy to define and investigate computable functions

of an integral variable or a real or computable variable, computable

predicates, and so forth. The fundamental problems involved are,

however, the same in each case, and I have chosen the computable numbers

for explicit treatment as involving the least cumbrous technique. I hope

shortly to give an account of the relations of the computable numbers,

functions, and so forth to one another. This will include a development

of the theory of functions of a real variable expressed in terms of com-

putable numbers. According to my definition, a number is computable

if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the

computable numbers include all numbers which could naturally be

regarded as computable. In particular, I show that certain large classes

of numbers are computable. They include, for instance, the real parts of

all algebraic numbers, the real parts of the zeros of the Bessel functions,

the numbers IT, e, etc. The computable numbers do not, however, include

all definable numbers, and an example is given of a definable number

which is not computable.

Although the class of computable numbers is so great, and in many

Avays similar to the class of real numbers, it is nevertheless enumerable.

In § 81 examine certain arguments which would seem to prove the contrary.

By the correct application of one of these arguments, conclusions are

reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.

The halting problem

From a description of an 

arbitrary computer 

program and an input, 

determine whether the 

program will finish running, 

or continue to run forever.
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Subjects 
Neural networks 
Post-quantum cryptography 
Economics 
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Futurology 
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Computational linguistics 
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Theory of computation 
Postmodernism 
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Cellular automata 
Automata theory 
Formal languages



Less obvious things people do with the Turing machine
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• Smallest Turing machine 

• Busy Beaver record breaking 

• Self-replicating Turing machines 

• Turing machines in Lego 

• Turing machines in wood 

• Turing machines in Minecraft 

• Turing machine tattoos 

• Turing drawings 

• https://youtu.be/soJ3FPvs7QI?t=227 

• ...

https://youtu.be/soJ3FPvs7QI?t=227


Why would anyone want to hack a UTM?
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Why are computers so often insecure?



A Turing machine
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A Turing machine
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A binary counter Turing machine 
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Input to a Turing machine
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Input



A Universal Turing Machine 
A Turing machine that simulates Turing machines

15



Marvin Minsky’s universal 
Turing machine 
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X0000001X0010110X0100011X0110100Y

(00, 0, 00, 0, 1) 
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(q01, 0, q00, 1, R) 
(q01, 1, q01, 0, L)
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https://intrinsic-propensity.github.io

Simulating a binary counter

https://intrinsic-propensity.github.io


A vulnerability
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Minsky's rule reduces complexity
Explicitly adding all implicit quintuples 
to the diagram would require close to 
70 arrows in addition to the 45 
explicitly drawn in the diagram.

However, Minsky's rule creates 
approximately twice as many implicit 
quintuples as the 70 required.
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https://intrinsic-propensity.github.io

Improper input validation

https://intrinsic-propensity.github.io
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Malicious SQL input to web page that allows arbitrary code execution 

105; DROP TABLE Suppliers

Result 

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers;

What does it even mean to hack an UTM?
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Malicious input to simulated Turing machine that allows arbitrary code execution?
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Start: Binary counter

UTM in State 6
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Target: Eraser

UTM in State 6

Hacker's objective

Is there any input ΔΔ...Δ that 

will coerce the UTM into a 

target tape, state and head 

position chosen by the 

attacker at some point in the 

execution?



Is hacking in NP? P? NP-hard?
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Brute-forcing will be difficult: 

Number of possible strings 

is 8n where n is the number 
of input symbols. 

(821 ≈ 1019)



Inspiration from stack buffer overflow attacks
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Strategy
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Origin

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

Target

...00DD...DM000Y001X0000000X0010000Y0...



Strategy
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Origin

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

Target

...00DD...DM000Y001X0000000X0010000Y0...

Naïve exploit attempt

...00DD...DY000X0000000X0010000Y0M000Y001X0000001X0010110X0100011X0110100Y0...



26

https://intrinsic-propensity.github.io

Naïve exploit attempt

https://intrinsic-propensity.github.io


Strategy
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Origin

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

Target

...00DD...DM000Y001X0000000X0010000Y0...

Naïve exploit attempt

...00DD...DY000X0000000X0010000Y0M000Y001X0000001X0010110X0100011X0110100Y0...

Working exploit

...00DD...DYBAAXAAAAAAAXAABAAAASM000Y001X0000001X0010110X0100011X0110100Y0...
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https://intrinsic-propensity.github.io

Arbitrary code execution

https://intrinsic-propensity.github.io


Mitigations
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• Validate inputs by preprocessing 

• Specify all required quintuples (an 
additional 70) explicitly 

• Use a special alphabet for T's tape 

• Find (rare) unexploitable 
parameters (e.g. buffer between M 
and Y <3)

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...



Why are computers so often insecure? 

Why is even an implementation of the simplest 
imaginable computer vulnerable to arbitrary code 

execution? 

Is it the case that computers are intrinsically brittle 
– that they at their very core have a propensity for 

arbitrary code execution vulnerabilities? 
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Insecurity root cause hypotheses

31

• Complexity? 

• Human fallibility? 

• John von Neumann’s stored program? 

• Weird machines? 

• ...
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Dullien, Thomas. "Weird machines, exploitability, and provable unexploitability." IEEE Transactions on Emerging Topics in Computing 8.2 (2017).



Another perspective on 
arbitrary code execution hacking
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The discovery that a Turing machine T, 

simulated on a universal Turing 

machine U, in itself is a universal 

Turing machine 

The discovery that T is  

accidentally Turing complete

A Turing machine that simulates  

a Turing  machine  

that simulates Turing machines



Many things are accidentally Turing complete
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• Lego 

• MineCraft 

• x86 mov 

• Musical notation 

• Magic: The Gathering 

• The smallest Turing 
machine



Concluding hypothesis
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Computers are intrinsically brittle – at their very 
core, they have a propensity for arbitrary code 
execution vulnerabilities –  because rule-based 

systems have a propensity to Turing completeness 


