Mutter aller Sicherheitslucken
Arbitrary Code Execution in the Universal Turing Machine

Prof Pontus Johnson
KTH Royal Institute of Technology (X heise online” L.

[+f: 54 Jahre unentdeckt - Mutter aller
Sicherheitslucken

D¥ Referenzim plementiorung des Basplans dler Computer - der universelien

|' | Turing Maschise - enthalt einen kitiszhey Bug. Was bedeutet das fiir unsere 177

1N w) in Pocket ipeithern di1 &

"Engineering ,is the closest thing to magic that exists in the world."

Elon Musk

aiy

egg”/g\‘g{%a

a1 Arbitrary code execution

38 OCH KONST &%

LS

Rank | D Name
[1)] | CWE-119 [Improper Restriction of Operations within the Bounds cf a Memory Buffer
[2) CWE-79 Improper Neutralizavon of Input During Wed Page Gereration ("'Cross-ste Scripting’)

2 1 WE (3] | CWE-20 [Improper Input Validation
0 9 C [4] | CWE-200 Information Exposure
[S) | CWE-125 Outof-bounds Read

I o p 25 [6) CWE-89 Almpropcr Neutralization of Special Elements usec in an SQL Command ('SQL Injection’)

[7] ' CWE-416 ‘UseAfter Free
M ost [8] ' CWE-190 Integer Overfilow or Wraparound
[9) CWE-352 Cross-Site Reguest Fargery (CSRF)
l!b] . c 22 "lmpropcr Uimitation of @ Mathname to @ Nestricted Directory {'Moth Traveraal')

Da n ge ro us [11) CWE-78 Improper Neutralization of Special éicncnts usec in an OS Command ('0S Cemmand ln,eﬂ.on')'

[12] | CWE-787 Out-of-bounds Write

SOftwa re [13) | CWE-267 |Imoroper Authenticarion

[14] CWE-476 NULL Poirter Dereference
E rro rS fA3] CWE-732 Inccrrect Permssion Assig e fur Critkies Resuuroe
[16] CWE-434 Unrestricted Ugload of File with Dangerous Type
[17] CWE-611 [mproper Restriction of XML External Entity Reference
[18] CWE-94 Improper Contml of Genamtion f Code ('Cada Injection')
' (19] | CWE-798 Use of Hard-coded Credenvials
[20] CWE-400 Uncontroled Resource consumpoon
[21] " CWE-772 “ﬁfsslno Release of Resource after Effective Lifetime
| 122] | CWE-426 Untrusted Search Path |
[23) : CWE-502 Den'-arlunrr-;v\ O’VL'!V",'UZ'.Oﬂ C‘-Va'.a
(24] | CWE-269 Improper Privilege Management
[25] | CWE-295 [Improper Certilicate Validation

Example arbitrary code execution
SQL injection

Program

txtUserId = getRequestString("UserId"); n
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId; =

Malicious input Log on

105; DROP TABLE Suppliers

105; DROP TABLE Users i
Result l :

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Users;
[e

\\ &
Y\\) . Common Weakness Enumeration
V « A Community-Developed List of Software & Hardware Weakness Tipes

Home > CWE List > CWE- Individual Dictionary Definition (4.4)

CWE-20: Improper Input Validation

Weakness ID: 20
Abstraction: Class
Structure: Simgle

Presentation Filter: Coumpls.e ¥
¥ Description
The product receives input or datz, but it does not validate or incorrectly valid
correctly.
¥ Extended Description
Input validation s a frequently-used technique for checking potentially danger
when communicating with other components. When software does nol validat

Entscheidungsproblem

Is there an algorithm that will take a formal language, and a logical statement in that language, and that will output "True" or "False",
depending on the truth value of the statement?

David Hilbert

1928

230 A. M. Turing [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ““computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral vaviable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers

far avnliett freatment ac 1mvalvine the leact rirvmhrane +echnicaie T hone

The halting problem

From a description of an
arbitrary computer
program and an input,
determine whether the
program will finish running,
or continue to run forever.

ke

Sk

231 Most cited papers citing [Turing 1936]

Subjects * AM Turing, Computing machinery and intelligence, 1950(15801)

Neural networks + J Schmidhuber, Deep learning in neural networks: An overview, 2015 (12480)

Post-quantum cryptography * PW Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, 1999 ('
Economics * N Georgescu-Roegen, The entropy law and the economic process, 2013 (9089)

Psychology * R Penrose, ND Mermin, The emperor's new mind: Concerning computers, minds, and the laws of physics, 1990 (81%
Futurology * R Kurzweil, The singularity is near: When humans transcend biology, 2005 (7189)

Complex systems » JH Holland, Hidden order: How adaptation builds complexity, 1996 (6797)

Algorithmic information theory « M Li, P Vitanyi, An introduction to Kolmogorov complexity and its applications, 1993 (6921)

Quantum theory * D Deutsch, Quantum theory, the Church—Turing principle and the universal quantum computer, 1985 (6162)
Numerical analysis » NJ Higham, Accuracy and stability of numerical algorithms, 2002 (5580)

Computational linguistics » D Jurafsky, Speech & language processing, 2000 (12209)

Parallel computing * H Gardner, The mind's new science: A history of the cognitive revolution, 1987 (6414)

Theory of computation + LG Valiant, A bridging model for parallel computation, 1990 (4930)

Postmodernism » JH Holland, Emergence: From chaos to order, 2000 (4914)

Computational complexity * R Penrose, Shadows of the Mind, 1994 (4765)

Cellular automata * M Sipser, Introduction to the Theory of Computation, 1996 (4501)

Automata theory + P Cilliers, Complexity and postmodernism: Understanding complex systems, 2002 (4312)

* ML Minsky, Computation, 1967 (4438)
* R Rojas, Neural networks: a systematic introduction, 2013 (4370)
» S Wolfram, Statistical mechanics of cellular automata, 1983 (3964)

Formal languages

Less obvious things people do with the Turing machine

« Smallest Turing machine

» Busy Beaver record breaking

» Self-replicating Turing machines
« Turing machines in Lego

« Turing machines in wood

« Turing machines in Minecraft

« Turing machine tattoos

» Turing drawings
 https://youtu.be/soJ3FPvs7QI?t=227

https://youtu.be/soJ3FPvs7QI?t=227

} L) * o

Why would anyone want to hack a UTM?

Why are computers so often insecure?

iy Teachiowg Toxdk

o © Identlfymg a simpler, related

10.8 Prcblom Solving Strategy: Sclve a Simpler Problem pl’Oblem

- -4 | -
| gt Sk bameaawm wortr emd begaiow g Lo iy T Dyr Trom vkl) ‘.Mm

More Problem-Solving Strategies: Solve a

Simpler Problem

-t smmwr)

A Turing machine

F s
T A A

-—Tape —»

1"

@ A binary counter Turing machine

1 _—1 1
0 1

O qor

Steps: 5 State: q00

EEEEEEEROOONEEEEEEEEREN

A Universal Turing Machine
A Turing machine that simulates Turing machines

~—Tape —

A binary counter Turing machine

1 1
(0 qoo
(0] 1

told stute, symbol scanned, new stute, symbol written. direction of motion)

(Qoo, 0, qoo, 0, R)
(qoo, 1, qo1, 1, L)

(00, 0, 00, 0, 1)
(00, 1, 01, 1, 0)

1
X
O qor
(qo1, 0, qoo, 1, R)

(o1, 1, qo1, O, L)

(01, 0, 00, 1, 1)
(01, 1,01, 0, 0)

X0000001X0010110X0100011X0110100Y

Marvin Minsky’s universal s, N\
Turing machine

et
/SN
L s
s L)
0 -) Wwep— ol
’S*?\ =
3 Q,/ /
7 N / is Sher)
JONRC 3:4
) ~ ! ‘
4 \’ M . s 9&{ |
>4 W
of / W) 1ol 9

%]
n\{-?)/ o ad” "nsl
."' ”Q"\ .’ uii
“L}:o ‘%Cl oﬁ‘f :
-
.
...000MOO0O Y 00 1 X 000...

gir) sif) Quintsples of T

e)

Pscudo- tape of T Siatecf T Symbo Descriphon of

-

{singie=anded) of T i

1 Simulating a binary counter

https://intrinsic-propensity.github.io

https://intrinsic-propensity.github.io

THAGRAM CONVENITIUNS

In most of our machines each state will have the character of an uni-
directional search: each state 15 usuully associated with moves in a single
direction. The dizgrams can be made simpler and more transparent by
recognizing this fuct, Thus we cun represent the machines of 6.1.1 and
€.1.2 by the diagrams in Fig. 6.1-1. Each arrow in the diagram represents

-y Slart
0-"—.’1'0

Qz._i, ; o1
-

»“ IM-H

2)
Fig. o.1-1

some guintuple (¢, 5;. qii. =, d,;). Then g, is the state at the 1ail of the
arrow, £ is the symbol at its 1ail, v, is written in the middle of the arrow
and omittec f the same as ¢, gy, is the state at the head of the arrow, and
d,,1s the symbol written inside the hexagon for ¢,. |l two g,’s name the
sume state bul their 4.'s are different, we cannot use this kind of diagram !
The most common guintuples, of the form (g, 5, 4., ¥, 4,,) 4r¢ simply
omited.

A vulnerability

Minsky's rule reduces complexity
Explicitly adding all implicit quintuples
to the diagram would require close to
70 arrows in addition to the 45
explicitly drawn in the diagram.

However, Minsky's rule creates
approximately twice as many implicit
quintuples as the 70 required.

_/ Common Weakness Enumer:

4 Community-Developed List of Software & Hardware Wee

CWE-20: Improper Input Validation

Weakness ID: 20
Abstraction: Class
Structure: Simgle

Presentation Filter: Cumple.e B

¥ Description

The product receives input or datz, but it does not validate or i
correctly.

v Bxvteanded Decrerintion

1 Improper input validation

https://intrinsic-propensity.github.io

https://intrinsic-propensity.github.io

What does it even mean to hack an UTM?

Malicious SQL input to web page that allows arbitrary code execution
105; DROP TABLE Suppliers
Result

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers;

1 1 1
(0) 1 (0] go1
Malicious input to simulated Turing machine that allows arbitrary code execution?

...00AA. . .AM000Y00AX0000001X0010110X0100011X0110100Y0. ..

20

..00AA...AM000Y001X0000001X0010110X0100011X0110100Y0. ..

Start: Binary counter Hacker's objective

1 1 ~ 1 Is there any input AA...A that
0O qoo o will coerce the UTM into a
target tape, state and head
o 1 =0 qo1 UTM i State 6 position chosen by the

attacker at some point in the
execution? _—___

Target: Eraser ST N

(0) 0,
O qoo

UTM in State 6 :
...00DD...DMY001X0000000X0010000Y0. .. I -jﬁﬁv Cﬁé

| —— ————— —_———————

21

Is hacking in NP? P? NP-hard?

. . .) Example : Turing's halting
Brute-forcing will be difficult: Prohlem |
NP -Hard

—

Number of possible strings

is 8" where n is the number
of input symbols.

Example : Vertex covering
Probiem

Example : Shortest path
21 o 19
(8 ~10) prahlem

Hera P!= NP

22

Inspiration from stack buffer overflow attacks

Bottom of . Botiom of .

Mningey . Fill Naamory e Fil
Direction Direction
Buffer 2 Buffer 2
(Local Vanable 2) (Local Variable 2)
Bufler 1 Buller 1 Space Machine Code:
(Local Varable 1) 15 Overwritten execve{bin/sh)
Return Pointer New Pointer to
Return Pointer is Overwritten exec code in Buffer 1
Function Call Function Cal|
Argurmnents Arguments
Top of 2 Tep of .
Memory . Memory .
Normal Stack Smashed Stack

EXHIBIT 10.2 A normal stack and a stack with a bufler overflow.

23

Origin

Target

Strategy

...00AA. . .AM0O00Y001%X0000001X0010110X0100011X0110100Y0...

...00DD...DM000Y001X0000000X0010000Y0...

24

Strategy

Origin

...00AA. . .AM0O00Y001%X0000001X0010110X0100011X0110100Y0...

Target

...00DD...DM000Y001X0000000X0010000Y0...

Naive exploit attempt

...00DD...DY000X0000000X0010000Y0M000Y001X0000001X0010110X0100011X0110100Y0...

25

1 Naive exploit attempt

https://intrinsic-propensity.github.io

https://intrinsic-propensity.github.io

Strategy

Origin

...00AA. . .AM0O00Y001%X0000001X0010110X0100011X0110100Y0...

Target
...00DD...DM000Y001X0000000X0010000Y0...

Naive exploit attempt
...00DD...DY000X0000000X0010000Y0M000Y001X0000001X0010110X0100011X0110100Y0...

Working exploit
...00DD...DYBAAXAAAAAAAXAABAAAASMO00Y001X0000001X0010110X0100011X0110100Y0. ..

27

1 Arbitrary code execution

https://intrinsic-propensity.github.io

https://intrinsic-propensity.github.io

Mitigations

» Validate inputs by preprocessing

* Specify all required quintuples (an ///:}é‘o -
additional 70) explicitly / _{a \D T i
 Use a special alphabet for T's tape " o : g ; I
* Find (rare) unexploitable iy ny | : g ;?‘ |
parameters (e.g. buffer between M xk ;z{*, | /\(‘3 I
and Y <3) N | e S
| w \;@ |
d B LN I S '

€

[
l
|
i
e e e} e e e e e e e e - S

...00AA...AM000Y001X0000001X0010110X0100011X0110100Y0...

29

Why are computers so often insecure?

Why is even an implementation of the simplest
imaginable computer vulnerable to arbitrary code
execution?

Is it the case that computers are intrinsically brittle
— that they at their very core have a propensity for
arbitrary code execution vulnerabilities?

30

Insecurity root cause hypotheses

« Complexity?

* Human fallibility?

« John von Neumann’s stored program?
* Weird machines?

qs

Dullien, Thomas. "Weird machines, exploitability, and provable unexploitability." IEEE Transactions on Emerging Topics in Computing 8.2 (2017).

Another perspective on
arbitrary code execution hacking

The discovery that a Turing machine T,
simulated on a universal Turing
machine U, in itself is a universal

: : LT T T IAITTTITTTS
Turing machine -

A Turing machine that simulates

5 a Turing machine

The discovery that T is

~—Tape —

that simulates Turing machines

accidentally Turing complete

32

aiy

é}é»—,t-\x%ws

Q@

FKTHE

s

Many things are accidentally Turing complete

 Lego

* MineCraft

* X86 mov

* Musical notation

» Magic: The Gathering

* The smallest Turing
machine

- o TR . ‘
Lrabssetl, Maw ol Numes A @ sb @

B W e ovnr Dirn s, S ol Flames
M aitachs, i dadh 4 dagsags s acy tegn

qund ¥ damage v wech of W 10 o ook
wargm
3

oy = Turlug-corapkic Magic: The Gathering 1s Taringz Complete
v L Fre S— “ots Blhwwee Sewn ot
s i bt peadont Mo ot Gaabe boatan o Poshanbng) [EESIRrY N —_
- e - Cantrugs. TRl Laghon PO, d W N A, L S O A

[COSIVIIRE AU PRI [A —— TV S S NSO —
L [s N rpe——

'_":’“‘_‘;‘"—"““:"u"". """_: T 7. .3 L 1. T
D e L N + D Y s sireral Temg Sagow padedid Ak 2 pee
Biags S oo ding ot wiirey Badng sabune tu ¢ Mg Tho Camumny A an o wrmge b e wutnr

B i s e e e Bt e B cmatnd et of e sconads' Be ddessthend e A Sy b adaas o

Concluding hypothesis

Computers are intrinsically brittle — at their very

core, they have a propensity for arbitrary code

execution vulnerabilities — because rule-based
systems have a propensity to Turing completeness

34

