
Mutter aller Sicherheitslücken
Arbitrary Code Execution in the Universal Turing Machine

Prof Pontus Johnson
KTH Royal Institute of Technology

2

"Engineering is the closest thing to magic that exists in the world."
Ar
bit

ra
ry
 c
od

e
ex
ec
ut
io
n Elon Musk

2019 CWE
Top 25
Most
Dangerous
Software
Errors

3

Arbitrary code execution

Example arbitrary code execution
SQL injection

4

Program

txtUserId = getRequestString("UserId");  
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

Malicious input

105; DROP TABLE Users

Result

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Users;

105; DROP TABLE Suppliers

5

Entscheidungsproblem

6

David Hilbert

Is there an algorithm that will take a formal language, and a logical statement in that language, and that will output "True" or "False",
depending on the truth value of the statement?

1928

7

230 A. M. TUKING [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO

THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real

numbers whose expressions as a decimal are calculable by finite means.

Although the subject of this paper is ostensibly the computable numbers.

it is almost equally easy to define and investigate computable functions

of an integral variable or a real or computable variable, computable

predicates, and so forth. The fundamental problems involved are,

however, the same in each case, and I have chosen the computable numbers

for explicit treatment as involving the least cumbrous technique. I hope

shortly to give an account of the relations of the computable numbers,

functions, and so forth to one another. This will include a development

of the theory of functions of a real variable expressed in terms of com-

putable numbers. According to my definition, a number is computable

if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the

computable numbers include all numbers which could naturally be

regarded as computable. In particular, I show that certain large classes

of numbers are computable. They include, for instance, the real parts of

all algebraic numbers, the real parts of the zeros of the Bessel functions,

the numbers IT, e, etc. The computable numbers do not, however, include

all definable numbers, and an example is given of a definable number

which is not computable.

Although the class of computable numbers is so great, and in many

Avays similar to the class of real numbers, it is nevertheless enumerable.

In § 81 examine certain arguments which would seem to prove the contrary.

By the correct application of one of these arguments, conclusions are

reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.

The halting problem

From a description of an

arbitrary computer

program and an input,

determine whether the

program will finish running,

or continue to run forever.

Most cited papers citing [Turing 1936]

8

• AM Turing, Computing machinery and intelligence, 1950(15801)

• J Schmidhuber, Deep learning in neural networks: An overview, 2015 (12480)

• PW Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, 1999 (10

• N Georgescu-Roegen, The entropy law and the economic process, 2013 (9089)

• R Penrose, ND Mermin, The emperor's new mind: Concerning computers, minds, and the laws of physics, 1990 (8156

• R Kurzweil, The singularity is near: When humans transcend biology, 2005 (7189)

• JH Holland, Hidden order: How adaptation builds complexity, 1996 (6797)

• M Li, P Vitányi, An introduction to Kolmogorov complexity and its applications, 1993 (6921)

• D Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer, 1985 (6162)

• NJ Higham, Accuracy and stability of numerical algorithms, 2002 (5580)

• D Jurafsky, Speech & language processing, 2000 (12209)

• H Gardner, The mind's new science: A history of the cognitive revolution, 1987 (6414)

• LG Valiant, A bridging model for parallel computation, 1990 (4930)

• JH Holland, Emergence: From chaos to order, 2000 (4914)

• R Penrose, Shadows of the Mind, 1994 (4765)

• M Sipser, Introduction to the Theory of Computation, 1996 (4501)

• P Cilliers, Complexity and postmodernism: Understanding complex systems, 2002 (4312)

• ML Minsky, Computation, 1967 (4438)

• R Rojas, Neural networks: a systematic introduction, 2013 (4370)

• S Wolfram, Statistical mechanics of cellular automata, 1983 (3964)

Subjects
Neural networks
Post-quantum cryptography
Economics
Psychology
Futurology
Complex systems
Algorithmic information theory
Quantum theory
Numerical analysis
Computational linguistics
Parallel computing
Theory of computation
Postmodernism
Computational complexity
Cellular automata
Automata theory
Formal languages

Less obvious things people do with the Turing machine

9

• Smallest Turing machine

• Busy Beaver record breaking

• Self-replicating Turing machines

• Turing machines in Lego

• Turing machines in wood

• Turing machines in Minecraft

• Turing machine tattoos

• Turing drawings

• https://youtu.be/soJ3FPvs7QI?t=227

• ...

https://youtu.be/soJ3FPvs7QI?t=227

Why would anyone want to hack a UTM?

10

Why are computers so often insecure?

A Turing machine

11

A Turing machine

12

L

1

O

1

R

1

O

O

1

q00

q01O

A binary counter Turing machine

13

L

1

O

1

R

1

O

O

1

q00

q01O

Input to a Turing machine

14

Input

A Universal Turing Machine
A Turing machine that simulates Turing machines

15

Marvin Minsky’s universal
Turing machine

16

X0000001X0010110X0100011X0110100Y

(00, 0, 00, 0, 1)
(00, 1, 01, 1, 0)

(01, 0, 00, 1, 1)
(01, 1, 01, 0, 0)

(q00, 0, q00, 0, R)
(q00, 1, q01, 1, L)

(q01, 0, q00, 1, R)
(q01, 1, q01, 0, L)

A binary counter Turing machine

...000M000 Y 000...00 1 X

L

1

O

1

R

1

O

O

1

q00

q01O

17

https://intrinsic-propensity.github.io

Simulating a binary counter

https://intrinsic-propensity.github.io

A vulnerability

18

Minsky's rule reduces complexity
Explicitly adding all implicit quintuples
to the diagram would require close to
70 arrows in addition to the 45
explicitly drawn in the diagram.

However, Minsky's rule creates
approximately twice as many implicit
quintuples as the 70 required.

19

https://intrinsic-propensity.github.io

Improper input validation

https://intrinsic-propensity.github.io

20

Malicious SQL input to web page that allows arbitrary code execution

105; DROP TABLE Suppliers

Result

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers;

What does it even mean to hack an UTM?

...00ΔΔ...ΔM000Y00ΔX0000001X0010110X0100011X0110100Y0...

L

1

O

1

R

1

O

O

1

q00

q01O

Malicious input to simulated Turing machine that allows arbitrary code execution?

21

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

L

1

O

1

R

1

O

O

1

q00

q01O

Start: Binary counter

UTM in State 6

...00DD...DMY001X0000000X0010000Y0...

L

q00

O

1

O

O

Target: Eraser

UTM in State 6

Hacker's objective

Is there any input ΔΔ...Δ that

will coerce the UTM into a

target tape, state and head

position chosen by the

attacker at some point in the

execution?

Is hacking in NP? P? NP-hard?

22

Brute-forcing will be difficult:

Number of possible strings

is 8n where n is the number
of input symbols.

(821 ≈ 1019)

Inspiration from stack buffer overflow attacks

23

Strategy

24

Origin

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

Target

...00DD...DM000Y001X0000000X0010000Y0...

Strategy

25

Origin

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

Target

...00DD...DM000Y001X0000000X0010000Y0...

Naïve exploit attempt

...00DD...DY000X0000000X0010000Y0M000Y001X0000001X0010110X0100011X0110100Y0...

26

https://intrinsic-propensity.github.io

Naïve exploit attempt

https://intrinsic-propensity.github.io

Strategy

27

Origin

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

Target

...00DD...DM000Y001X0000000X0010000Y0...

Naïve exploit attempt

...00DD...DY000X0000000X0010000Y0M000Y001X0000001X0010110X0100011X0110100Y0...

Working exploit

...00DD...DYBAAXAAAAAAAXAABAAAASM000Y001X0000001X0010110X0100011X0110100Y0...

28

https://intrinsic-propensity.github.io

Arbitrary code execution

https://intrinsic-propensity.github.io

Mitigations

29

• Validate inputs by preprocessing

• Specify all required quintuples (an
additional 70) explicitly

• Use a special alphabet for T's tape

• Find (rare) unexploitable
parameters (e.g. buffer between M
and Y <3)

...00ΔΔ...ΔM000Y001X0000001X0010110X0100011X0110100Y0...

Why are computers so often insecure?

Why is even an implementation of the simplest
imaginable computer vulnerable to arbitrary code

execution?

Is it the case that computers are intrinsically brittle
– that they at their very core have a propensity for

arbitrary code execution vulnerabilities?

30

Insecurity root cause hypotheses

31

• Complexity?

• Human fallibility?

• John von Neumann’s stored program?

• Weird machines?

• ...

L

1

O

1

R

1

O

O

1

q0

q1O

💥

💥
💣

q2

L

💥
💣

q3

O

1

O

O

Dullien, Thomas. "Weird machines, exploitability, and provable unexploitability." IEEE Transactions on Emerging Topics in Computing 8.2 (2017).

Another perspective on
arbitrary code execution hacking

32

The discovery that a Turing machine T,

simulated on a universal Turing

machine U, in itself is a universal

Turing machine

The discovery that T is

accidentally Turing complete

A Turing machine that simulates

a Turing machine

that simulates Turing machines

Many things are accidentally Turing complete

33

• Lego

• MineCraft

• x86 mov

• Musical notation

• Magic: The Gathering

• The smallest Turing
machine

Concluding hypothesis

34

Computers are intrinsically brittle – at their very
core, they have a propensity for arbitrary code
execution vulnerabilities – because rule-based

systems have a propensity to Turing completeness

